29 research outputs found

    Accuracy of breeding values of 'unrelated' individuals predicted by dense SNP genotyping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent developments in SNP discovery and high throughput genotyping technology have made the use of high-density SNP markers to predict breeding values feasible. This involves estimation of the SNP effects in a training data set, and use of these estimates to evaluate the breeding values of other 'evaluation' individuals. Simulation studies have shown that these predictions of breeding values can be accurate, when training and evaluation individuals are (closely) related. However, many general applications of genomic selection require the prediction of breeding values of 'unrelated' individuals, i.e. individuals from the same population, but not particularly closely related to the training individuals.</p> <p>Methods</p> <p>Accuracy of selection was investigated by computer simulation of small populations. Using scaling arguments, the results were extended to different populations, training data sets and genome sizes, and different trait heritabilities.</p> <p>Results</p> <p>Prediction of breeding values of unrelated individuals required a substantially higher marker density and number of training records than when prediction individuals were offspring of training individuals. However, when the number of records was 2*N<sub>e</sub>*L and the number of markers was 10*N<sub>e</sub>*L, the breeding values of unrelated individuals could be predicted with accuracies of 0.88 – 0.93, where N<sub>e </sub>is the effective population size and L the genome size in Morgan. Reducing this requirement to 1*N<sub>e</sub>*L individuals, reduced prediction accuracies to 0.73–0.83.</p> <p>Conclusion</p> <p>For livestock populations, 1N<sub>e</sub>L requires about ~30,000 training records, but this may be reduced if training and evaluation animals are related. A prediction equation is presented, that predicts accuracy when training and evaluation individuals are related. For humans, 1N<sub>e</sub>L requires ~350,000 individuals, which means that human disease risk prediction is possible only for diseases that are determined by a limited number of genes. Otherwise, genotyping and phenotypic recording need to become very common in the future.</p

    Genomic selection in commercial perennial crops: applicability and improvement in oil palm (Elaeis guineensis Jacq.)

    Get PDF
    Genomic selection (GS) uses genome-wide markers to select individuals with the desired overall combination of breeding traits. A total of 1,218 individuals from a commercial population of Ulu Remis x AVROS (UR x AVROS) were genotyped using the OP200K array. The traits of interest included: shellto- fruit ratio (S/F, %), mesocarp-to-fruit ratio (M/F, %), kernel-to-fruit ratio (K/F, %), fruit per bunch (F/B, %), oil per bunch (O/B, %) and oil per palm (O/P, kg/palm/year). Genomic heritabilities of these traits were estimated to be in the range of 0.40 to 0.80. GS methods assessed were RR-BLUP, Bayes A (BA), Cπ (BC), Lasso (BL) and Ridge Regression (BRR). All methods resulted in almost equal prediction accuracy. The accuracy achieved ranged from 0.40 to 0.70, correlating with the heritability of traits. By selecting the most important markers, RR-BLUP B has the potential to outperform other methods. The marker density for certain traits can be further reduced based on the linkage disequilibrium (LD). Together with in silico breeding, GS is now being used in oil palm breeding programs to hasten parental palm selection

    Utility of whole-genome sequence data for across-breed genomic prediction

    Get PDF
    Background: Genomic prediction (GP) across breeds has so far resulted in low accuracies of the predicted genomic breeding values. Our objective was to evaluate whether using whole-genome sequence (WGS) instead of low-density markers can improve GP across breeds, especially when markers are pre-selected from a genome-wide association study (GWAS), and to test our hypothesis that many non-causal markers in WGS data have a diluting effect on accuracy of across-breed prediction. Methods: Estimated breeding values for stature and bovine high-density (HD) genotypes were available for 595 Jersey bulls from New Zealand, 957 Holstein bulls from New Zealand and 5553 Holstein bulls from the Netherlands. BovineHD genotypes for all bulls were imputed to WGS using Beagle4 and Minimac2. Genomic prediction across the three populations was performed with ASReml4, with each population used as single reference and as single validation sets. In addition to the 50k, HD and WGS, markers that were significantly associated with stature in a large meta-GWAS analysis were selected and used for prediction, resulting in 10 prediction scenarios. Furthermore, we estimated the proportion of genetic variance captured by markers in each scenario. Results: Across breeds, 50k, HD and WGS markers resulted in very low accuracies of prediction ranging from − 0.04 to 0.13. Accuracies were higher in scenarios with pre-selected markers from a meta-GWAS. For example, using only the 133 most significant markers in 133 QTL regions from the meta-GWAS yielded accuracies ranging from 0.08 to 0.23, while 23,125 markers with a − log10(p) higher than 7 resulted in accuracies of up 0.35. Using WGS data did not significantly improve the proportion of genetic variance captured across breeds compared to scenarios with few but pre-selected markers. Conclusions: Our results demonstrated that the accuracy of across-breed GP can be improved by using markers that are pre-selected from WGS based on their potential causal effect. We also showed that simply increasing the number of markers up to the WGS level does not increase the accuracy of across-breed prediction, even when markers that are expected to have a causal effect are included

    Accuracy of direct genomic values in Holstein bulls and cows using subsets of SNP markers

    Get PDF
    Background: At the current price, the use of high-density single nucleotide polymorphisms (SNP) genotyping assays in genomic selection of dairy cattle is limited to applications involving elite sires and dams. The objective of this study was to evaluate the use of low-density assays to predict direct genomic value (DGV) on five milk production traits, an overall conformation trait, a survival index, and two profit index traits (APR, ASI). Methods. Dense SNP genotypes were available for 42,576 SNP for 2,114 Holstein bulls and 510 cows. A subset of 1,847 bulls born between 1955 and 2004 was used as a training set to fit models with various sets of pre-selected SNP. A group of 297 bulls born between 2001 and 2004 and all cows born between 1992 and 2004 were used to evaluate the accuracy of DGV prediction. Ridge regression (RR) and partial least squares regression (PLSR) were used to derive prediction equations and to rank SNP based on the absolute value of the regression coefficients. Four alternative strategies were applied to select subset of SNP, namely: subsets of the highest ranked SNP for each individual trait, or a single subset of evenly spaced SNP, where SNP were selected based on their rank for ASI, APR or minor allele frequency within intervals of approximately equal length. Results: RR and PLSR performed very similarly to predict DGV, with PLSR performing better for low-density assays and RR for higher-density SNP sets. When using all SNP, DGV predictions for production traits, which have a higher heritability, were more accurate (0.52-0.64) than for survival (0.19-0.20), which has a low heritability. The gain in accuracy using subsets that included the highest ranked SNP for each trait was marginal (5-6%) over a common set of evenly spaced SNP when at least 3,000 SNP were used. Subsets containing 3,000 SNP provided more than 90% of the accuracy that could be achieved with a high-density assay for cows, and 80% of the high-density assay for young bulls. Conclusions: Accurate genomic evaluation of the broader bull and cow population can be achieved with a single genotyping assays containing ∼ 3,000 to 5,000 evenly spaced SNP

    Mycobacterial dihydrofolate reductase inhibitors identified using chemogenomic methods and in vitro validation.

    Get PDF
    The lack of success in target-based screening approaches to the discovery of antibacterial agents has led to reemergence of phenotypic screening as a successful approach of identifying bioactive, antibacterial compounds. A challenge though with this route is then to identify the molecular target(s) and mechanism of action of the hits. This target identification, or deorphanization step, is often essential in further optimization and validation studies. Direct experimental identification of the molecular target of a screening hit is often complex, precisely because the properties and specificity of the hit are not yet optimized against that target, and so many false positives are often obtained. An alternative is to use computational, predictive, approaches to hypothesize a mechanism of action, which can then be validated in a more directed and efficient manner. Specifically here we present experimental validation of an in silico prediction from a large-scale screen performed against Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. The two potent anti-tubercular compounds studied in this case, belonging to the tetrahydro-1,3,5-triazin-2-amine (THT) family, were predicted and confirmed to be an inhibitor of dihydrofolate reductase (DHFR), a known essential Mtb gene, and already clinically validated as a drug target. Given the large number of similar screening data sets shared amongst the community, this in vitro validation of these target predictions gives weight to computational approaches to establish the mechanism of action (MoA) of novel screening hit
    corecore